Chapter 3 – Exploring Cout

1. New Lines
 The object cout outputs the results of expressions. Expressions can contain information that effects how the output appears. One of the most useful is `endl`, which makes output change lines. For example:

   ```
cout << “This is on one line.” << endl << “This is on another line.”;
```

will produce the output

```
This is on one line.
This is on another line.
```

Note: cout and endl come from iostream.

2. Backslash Commands
 When used in a character or string expression, the backslash character (\) is used to give instructions to cout. For example, \n has the identical effect of endl. For example:

   ```
cout << “This is on one line.” << ‘\n’ << “This is on another line.”;
```

will produce the output

```
This is on one line.
This is on another line
```

The only advantage of \n is that it can be included in a string. For example:

   ```
cout << “This is on one line.\nThis is on another line.”;
```

will also produce the output

```
This is on one line.
This is on another line
```
Backslash commands originated with the C programming language. The following is a partial list.

Partial Table of Backslash Commands to Cout

<table>
<thead>
<tr>
<th>Character</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘\n’</td>
<td>new line characters</td>
</tr>
<tr>
<td>‘\b’</td>
<td>backspace one characters</td>
</tr>
<tr>
<td>‘\f’</td>
<td>form feed</td>
</tr>
<tr>
<td>‘\r’</td>
<td>carriage return</td>
</tr>
<tr>
<td>‘\t’</td>
<td>horizontal tab</td>
</tr>
<tr>
<td>‘\v’</td>
<td>vertical tab</td>
</tr>
<tr>
<td>‘\’</td>
<td>backslash</td>
</tr>
<tr>
<td>‘\’</td>
<td>single quote</td>
</tr>
<tr>
<td>‘\’’</td>
<td>double quote</td>
</tr>
</tbody>
</table>

3. Member Functions

Member functions are functions in a class. Each object of a class will have as part of itself the member functions of its class. Member functions may be invoked (called, used) in the following form:

```cpp
object.function ( argument-list )
```

The object cout has member functions. Two commonly used cout member functions are `fill` and `width`.

cout member function `width` sets the spacing of output. Width is used as in the following example,

```cpp
cout << “Hi!”;
cout.width(10);
cout << “Bye!”;
```

would produce the following output:

```
Hi!    Bye!
```

The expression “Bye!” takes up 10 spaces. When it is output, the expression produces 6 spaces and B-y-e-!.
The effect of width is limited to the next cout statement. For example,

```cpp
cout << "Hi!";
cout.width(10);
cout << "Bye!";
cout << "Why?"
```

would produce the following output:

```
Hi! Bye! Why?
```

cout member function fill sets the character that will be used in output that has a width larger than the expression needs. For example,

```cpp
cout.fill('#');
cout << "Hi!";
cout.width(10);
cout << "Bye!";
cout.width(6);
cout << "Why?"
cout.width(4);
cout << 88;
```

would produce the following output:

```
Hi!####Bye!##Why?##88
```

Note that the effect of fill continues beyond the first cout.

4. Decimals

The number of decimal places output from the results of a floating point number expression can be controlled with the ostream member functions setf and cout member function precision. In the following example, the setf function is called to enable fixing the location of the decimal point. The precision function, cout is set to a precision of 1. This will produce a number with a one digit decimal.

```cpp
double d = 44.1234;
cout.setf(ios::fixed, ios::floatfield); // include these setf calls
cout.setf(ios::showpoint); // once per program
cout.precision(1);
cout << d;
```

The output of this example code is:

```
44.1
```
As usual, cout will round any number output, as in this example:

```cpp
double d = 44.8765;
cout.setf(ios::fixed, ios::floatfield);
cout.setf(ios::showpoint);
cout.precision(2);
cout << d;
```

The output of this example code is:

```
44.88
```

Note: The default setting of cout precision is 6.

In addition to `cout.width()` and `cout.precision()`, there are functions that do not belong to object `cout` and can be placed directly in a cout statement as an expression. These are functions `setw` (sets the width of the next output) and `setprecision` (sets the precision of the next floating point output), which can be used in a C++ program by including `iomanip`. Here is an example program using these functions.

```cpp
#include <iostream>
#include <iomanip>

using namespace std;

void main( )
{
   double d = 44.8765;
   cout.setf(ios::fixed, ios::floatfield);
   cout.setf(ios::showpoint);
   cout.fill('*');
   cout << "d is " << setw(10) << setprecision(2) << d << endl;
}
```

This program will produce the output:

```
d is *****44.88
```
Exercises

1. What is output of the following `cout` statement?

   ```cpp
cout << "one" << endl << "two\nthree\b\b\b\bfour";```

2. What is the output of the following statements?

   ```cpp
cout.fill(‘!’);
cout.width(8);
cout << "one”;
cout.width(6);
cout << 4 * 2;```

3. What is the output of the following statements?

   ```cpp
double PI = 3.141592654;
cout.setf(ios::fixed, ios::floatfield);
cout.setf(ios::showpoint);
cout << PI << endl;
cout.precision(0);
cout << PI << endl;
cout.precision(1);
cout << PI << endl;
cout.precision(2);
cout << PI << endl;
cout.precision(4);
cout << PI << endl;
cout.precision(8);
cout << PI << endl;
cout.precision(9);
cout << PI << endl;
cout.precision(10);
cout << PI << endl;
cout.precision(5);
cout << PI << endl;```

4. Rewrite the code of exercise 3, replacing the calls to `cout.precision` with calls to `setprecision`. 
Programming Assignment 3.1
Write a the simplest program possible to output the following:

CCC   +     +
C     +     +
C     ++++   ++++
C     +     +
CCC   +     +

Programming Assignment 3.2
Write a program to list the following names in 3 rows and 3 columns. Hint: Use ‘\t’ to make the columns.

Abe, Bill, Carrie, David, Edward, Gale, Harry, Ida, Jenny

Programming Assignment 3.3
Rewrite programming assignment 3.2 so that the spaces between the three names on one row are replaced by the ampersand character (&). Note: You must use the fill function.

Programming Assignment 3.4
Write a program to output the area of a circle that is 8.375 meters in diameter. (Use the formula 3.141592654*radius*radius). Limit the number of decimal digits displayed to 2 decimal places.